Investigation of NADH Binding, Hydride Transfer, and NAD+ Dissociation during NADH Oxidation by Mitochondrial Complex I Using Modified Nicotinamide Nucleotides

نویسندگان

  • James A. Birrell
  • Judy Hirst
چکیده

NADH:ubiquinone oxidoreductase (complex I) is a complicated respiratory enzyme that conserves the energy from NADH oxidation, coupled to ubiquinone reduction, as a proton motive force across the mitochondrial inner membrane. During catalysis, NADH oxidation by a flavin mononucleotide is followed by electron transfer to a chain of iron-sulfur clusters. Alternatively, the flavin may be reoxidized by hydrophilic electron acceptors, by artificial electron acceptors in kinetic studies, or by oxygen and redox-cycling molecules to produce reactive oxygen species. Here, we study two steps in the mechanism of NADH oxidation by complex I. First, molecular fragments of NAD(H), tested as flavin-site inhibitors or substrates, reveal that the adenosine moiety is crucial for binding. Nicotinamide-containing fragments that lack the adenosine do not bind, and ADP-ribose binds more strongly than NAD(+), suggesting that the nicotinamide is detrimental to binding. Second, the primary kinetic isotope effects from deuterated nicotinamide nucleotides confirm that hydride transfer is from the pro-S position and reveal that hydride transfer, along with NAD(+) dissociation, is partially rate-limiting. Thus, the transition state energies are balanced so that no single step in NADH oxidation is completely rate-limiting. Only at very low NADH concentrations does weak NADH binding limit NADH:ubiquinone oxidoreduction, and at the high nucleotide concentrations of the mitochondrial matrix, weak nucleotide binding constants assist product dissociation. Using fast nucleotide reactions and a balance between the nucleotide binding constants and concentrations, complex I combines fast and energy-conserving NADH oxidation with minimal superoxide production from the nucleotide-free site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages.

Cytoplasmic free NAD(+)/NADH ratios have been calculated from lactate to pyruvate ratios, and mitochondrial NAD(+)/NADH ratios, have been calculated from beta-hydroxybutyrate to acetoacetate ratios in isolated rabbit alveolar macrophages. In freshly harvested cells, assuming a pH of 7 for the two compartments, cytoplasmic NAD(+)/NADH averaged 709 +/-293 (SD), and mitochondrial NAD(+)/NADH avera...

متن کامل

Crystal structures of transhydrogenase domain I with and without bound NADH.

Transhydrogenase (TH) is a dimeric integral membrane enzyme in mitochondria and prokaryotes that couples proton translocation across a membrane with hydride transfer between NAD(H) and NADP(H) in soluble domains. Crystal structures of the NAD(H) binding alpha1 subunit (domain I) of Rhodospirillum rubrum TH have been determined at 1.8 A resolution in the absence of dinucleotide and at 1.9 A reso...

متن کامل

Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression.

Despite advances in clinical therapy, metastasis remains the leading cause of death in breast cancer patients. Mutations in mitochondrial DNA, including those affecting complex I and oxidative phosphorylation, are found in breast tumors and could facilitate metastasis. This study identifies mitochondrial complex I as critical for defining an aggressive phenotype in breast cancer cells. Specific...

متن کامل

Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor.

Carboxyl-terminal binding protein (CtBP) is a transcriptional corepressor originally identified through its ability to interact with adenovirus E1A. The finding that CtBP-E1A interactions were regulated by the nicotinamide adeninine dinucleotides NAD+ and NADH raised the possibility that CtBP could serve as a nuclear redox sensor. This model requires differential binding affinities of NAD+ and ...

متن کامل

Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.

The ability of O2 metabolites derived from the xanthine-xanthine oxidase system to inhibit mitochondrial function was examined using freshly isolated rat liver mitochondria. Under 2,4-dinitrophenol-uncoupled conditions, mitochondria exposed to free radicals exhibited a significant decrease in O2 consumption supported by NAD(+)-linked substrates, but showed almost no change in O2 consumption in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2013